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Abstract 
 

Time transfer measurements made between UTC (k) timing laboratories are routinely 
performed using a variety of satellite-based methods.  The National Physical Laboratory has 
undertaken a study of combining time transfer measurements from separate links between two 
laboratories, where each link measures the same clock difference.  The aim is to produce a time 
series of (composite) time-transfer measurements that has appreciably less measurement noise 
than any of the component measurements.  A Kalman filter is used to combine the 
measurements.  The method is developed to treat some of the known characteristics of satellite 
time transfer measurements.  These include time series having different measurement intervals, 
and slowly changing delays occurring within the time transfer hardware.  The treatment of 
missing data and the addition and removal of individual links are also examined. 

 

1. INTRODUCTION  
Time scales at timing laboratories generating Coordinated Universal Time (UTC (k)) are routinely 
compared using a variety of satellite-based methods including TWSTFT [1], geodetic GPS [2], P3 and 
C/A code GPS common view [3], and GLONASS common view [4].  Many of the larger UTC (k) 
laboratories use all the above methods operationally as well as having considerable redundant hardware.  
Time transfer links used in the formation of UTC by the Bureau International des Poids et Mesures 
(BIPM) are processed using measurements obtained from one particular time transfer technique, 
employing only a single set of hardware.  Improvement would be expected by processing all the available 
time transfer measurements. 
 
This paper describes a study undertaken at the National Physical Laboratory (NPL) of combining time 
transfer measurements made between two laboratories using several different methods and more than one 
set of hardware for each method.  The aim is to produce, over the short and long term, composite time 
transfer measurements having time and frequency uncertainties that are smaller than those for any 
individual set of measurements.  A further objective is to provide an approach that is sufficiently flexible 
to handle a variety of practical circumstances. 
 
A description of an algorithm based on a Kalman filter to combine the measurements is given in Section 
2. Some of the extensive tests of the algorithm using simulated data are discussed in Section 3.  The 
process of adding and removing time transfer links is considered in Section 4.  In Section 5 the filter is 
applied to time transfer links that provide measurements with different minimum spacing.  The treatment 
of missing data is also considered.  Future possible modifications to the filter are discussed in Section 6.  
The conclusions to this study are presented in Section 7.  
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2. TIME  TRANSFER  ALGORITHM  BASED  ON  A  KALMAN  FILTER 
3.   
3.1  INTRODUCTION 
 
A Kalman filter is an iterative algorithm that produces estimates of physical parameters (comprising a so-
called state vector) at the current epoch by combining measurements made at that epoch with estimates of 
those parameters determined at the previous epoch.  The application of a Time Transfer Kalman Filter 
(TTKF) algorithm to combine a number of time transfer measurements should in principle be relatively 
straightforward, as, in contrast to a clock algorithm [6], the physical parameters can be measured directly.  
 
There are, however, several aspects of time transfer measurements that make its application more 
complicated.  These include (a) slowly changing delay biases that may occur on each of the individual 
time transfer links, (b) a wide variety of noise processes present in both the time transfer measurements 
and the clocks being compared, (c) measurement data sets that have a wide variety of minimum spacing 
and are often incomplete, and (d) significant correlations that may exist between the measurements 
obtained from individual links.  In addition, the filter must be designed so that a link can be added and 
removed, in the latter case without appreciably degrading the filter’s performance.  
 
NPL’s approach to this study was to start with an idealized model of time transfer measurements, the 
resulting Kalman filter being evaluated using simulated data.  New elements or properties were then 
added in turn to the TTKF algorithm to treat more physically realistic situations. 
 
Let x(tn) be a vector of values of the physical parameters being estimated by the Kalman filter at the 
current epoch tn.  The evolution of these physical parameters is modelled by the state equation 
 
 ),()()()( 10 nnn ttt ε+τΦ= −xx  (1) 
 
where Φ(τ0) is the state propagation matrix and ε(tn) the system error in the state equation, τ0 being the 
interval between successive measurement epochs.  The relationship between y(tn), the measurements 
made at tn, and x(tn) is given by the observation equation 
 
 ),()()()( nnnn tttHt exy +=  (2) 
 
where H(tn) is the design matrix and e(tn) the observation error at epoch tn. The system errors and 
observation errors at tn may respectively be described in terms of the process covariance matrix Q(tn) and 
measurement covariance matrix R(tn), where 
 
 ),(),()( T

nn tEtQ ε=εεε=  (3) 
 
 ),(),()( T

nn tEtR eeee ==  (4) 
 
and E is the expectation operator. 
 
The standard iterative Kalman filter equations [5] are then given by 
 
 ),(ˆ)()(ˆ 10

+
−

− τΦ= nn tt xx  (5) 
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−  (6) 

 [ ] ,)()()()()()()(
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 [ ],)(ˆ)()()()(ˆ)(ˆ −−+ −+= nnnnnn ttHttKtt xyxx  (8) 
 
 [ ] ),()()()( −+ −= nnnn tPtHtKItP  (9) 
 
where )(ˆ −

ntx  and )(ˆ +
ntx  represent the state vector at the current epoch before and after the incorporation 

of the current measurements, )( −
ntP  and )( +

ntP  the associated covariance matrices, and K(tn) is the 
Kalman gain. 
 
3.2 CHOICE  OF  STATE  VECTOR  
 
The key to the design of a good Kalman filter is the choice of the physical parameters that constitute the 
state vector )(ˆ ntx .  A natural choice in this application is )(ˆ ntx  = ( 0ˆax , 1ˆax , 2ˆax )T, where 0ˆax  is the time 
offset, 1ˆax  the frequency offset, and 2ˆax  the linear frequency drift offset between the two UTC (k) 
timescales being assessed.  A consequence of this choice is that the two scales have the characteristics of 
free-running clocks.  It is therefore important to “back correct” the UTC (k) data to remove any steers so 
that it is obtained directly from a free-running clock or timescale. 
 
Figure 1 shows plots of UTC (NPL) − UTC (USNO) made using TWSTFT (TW), geodetic GPS (CP), 
and GPS common-view (CV) time transfer links.  Figure 2 shows the differences between the 
measurements for each pair of links.  Taking differences eliminates the clock noise.  There are clearly 
biases associated with the links; these are observed as offsets between the measurements obtained from 
two independent links.  These biases are initially due to calibration errors, but their magnitude may 
increase due to instabilities associated with slow random delay occurring within the time transfer 
instrumentation.  In the TTKF algorithm presented here, these biases are considered to be physical 
parameters and described by m additional elements of the state vector, one for each link, where m is the 
number of links.  The complete state vector is therefore given by 
 

,)ˆ,..,ˆ,ˆ,ˆ,ˆ()(ˆ T
1210 bmbaaan xxxxxt =x                                                (10) 

 
i.e., by augmenting the original vector by bias terms bmb xx ˆ,..,ˆ 1 .  Introducing these extra elements 
complicates the operation of the Kalman filter.  The situation is reminiscent of a clock algorithm where 
the physical parameters constituting the state vector are not measured directly.  In this case, element 0ˆax  
and the elements of bx̂ may become confounded. 
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Figure 1.  Plots of UTC (NPL) – UTC (USNO) 
measured using three different time transfer 
links. 
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Figure 2. Plots of the difference between 
measurements obtained from pairs of UTC 
(NPL) – UTC (USNO) time transfer links. 
 
 

3.3 STATE  PROPAGATION  MATRIX 
 
The first Kalman filter equation (5) determines the state vector at the current epoch using only 
measurements already incorporated into the filter from previous epochs.  Key to this process is the use of 
the (m + 3) × (m + 3) state propagation matrix Φ.  The physical parameters at the current epoch are 
estimated by extrapolating estimates of these parameters made at the previous epoch on the basis of the 
underlying quadratic model that follows from the choice of parameters made in Section 2.2.  Φ describes 
the deterministic relationship between the physical parameters at consecutive epochs.  The form of Φ 
used in the TTKF algorithm is given in equation (11). 
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The leading 3 × 3 sub-matrix of Φ describes the changes in the time-offset, frequency-offset, and linear 
frequency-drift-offset state vector elements due to the deterministic properties of the clocks being 
compared.  This state propagation matrix has been used extensively in clock algorithms [6].  The bottom 
right m × m sub-matrix is the identity matrix of order m.  It is assumed that there are no deterministic 
processes that change the bias elements of the state vector.  The consequent assumption is that changes to 
the time-transfer instrumentation delays are due only to random processes. 
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3.4 PROCESS  COVARIANCE  MATRIX  FOR  ERRORS  IN  THE  STATE  EQUATION 
 

The second Kalman filter equation (6) determines the covariance matrix )( −
ntP  of order m + 3 for the 

prediction )(ˆ −
ntx at the current epoch, before the measurements are incorporated in the filter.  The process 

covariance matrix Q (equation (12)), also of order m + 3, describes the noise processes that result in 
changes to the physical processes between successive epochs that are estimated by the state vectors.  
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The leading 3 × 3 sub-matrix of Q is the well-known process covariance matrix used in clock algorithms, 
 where 2

WFMσ  and 2
RWFMσ  are the variances of the White Frequency Modulation (WFM) and Random 

Walk Frequency Modulation (RWFM) noise parameters [7].  The bottom right m × m sub-matrix is the 
covariance matrix B of order m of the bias state vectors.  The long-term instability of these biases is 
modelled as a random-walk process that resembles WFM.  In reality, modelling these instabilities as a 
flicker-phase process may be more appropriate, an option that will be considered in future work.  The 
magnitude of the delay instabilities will be very much smaller than the variance of the WFM clock noise. 
The remaining elements of Q are zero, since it is assumed that the clock noise and delay instabilities of 
the time transfer links producing the biases are uncorrelated. 
 
Design  Matrix  
 
The (m + 1) × (m + 3) design matrix H(tn) describes the relationship between the measurements )( nty  
and the state vector )(ˆ ntx  at tn.  Expression (13) is the choice of H(tn) used in the TTKF algorithm.  In the 
first implementation of the filter in the NPL study, )( ntH  had only the first m rows in expression (13), 
corresponding to a measurement made with m particular time transfer links.  As stated (Section 2.2), when 
using this design matrix, the elements 0ˆax and bmb xx ˆ,,ˆ 1 Κ  of the state vector become confounded.  This, 
coupled with the time transfer bias instabilities being modelled as nonstationary WFM noise processes, 
results in the time-offset element P11 of the covariance matrix P increasing indefinitely.  Physically this 
corresponds to the uncertainty of the resulting time transfer estimate increasing with time due to the 
cumulative effects of the instrumentation delay instabilities of each of the time transfer links.  Although 
physically realistic, operating a Kalman filter in this configuration may not be desirable. Because the 
magnitude of the instabilities in the bias state vectors is very small the “covariance growth” is unlikely by 
itself to be a problem when operating the filter. 
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In later versions of the filter, )( ntH  was augmented by a “pseudo-measurement,” viz., as the last 

((m + 1)st) row in expression (13).  All the corresponding measurements ym+1(tn) are set to a constant Kw 
that is initially taken as zero.  Kw is changed only when time transfer links are added or removed from the 
algorithm.  The weights T

1
T ),..,( mww=w are determined by 

11
1w 1

1

−

−

=
B

B
T ,                                                                        (14) 

 
where B is the bottom right m × m sub-matrix of the process covariance matrix Q.  This weighting scheme 
minimizes the effect of the long-term instabilities present in the time transfer measurements. 
 
The pseudo-measurement acts as a constraint that improves the performance of the TTKF algorithm in 
several ways: 
 

a) The state vectors are explicitly determined from the available “measurements.” 
b) “Covariance growth” is prevented. 
c) The stability of the filter is improved. 
d) The weights minimize the effects of delay instabilities in the time transfer instrumentation. 
e) It is easier to add and remove time transfer links. 

 
A disadvantage is that the prevention of “covariance growth” implies that the covariance matrix P is no 
longer a valid measure of the uncertainty in the state vector estimates of the physical parameters. 
 
3.5 MEASUREMENT  COVARIANCE  MATRIX  FOR  ERRORS  IN  THE  OBSERVATIONS  
 
The measurement covariance matrix R characterizes the noise processes occurring within the time transfer 
measurements.  The long-term instabilities due to delay changes in the time transfer instrumentation have 
already been modelled as part of the process covariance matrix Q.  It is assumed that the remaining noise 
is principally WPM.  Correlation between the noise of individual time transfer links may be described by 
adding nonzero off-diagonal elements.  Element 1,1 ++ mmR  represents the variance of the “noise” in the 
pseudo-measurement and is initially set to a small finite value.  Expression (15) gives the resulting 
covariance matrix used in the TTKF algorithm. 
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The remaining Kalman filter equations perform the following functions:  Equation (7) provides the 
Kalman gain matrix K.  This matrix specifies the weighting of each measurement made in the current 
epoch that is used in determining the state vector elements.  Where the Kalman gain is low, measurements 
made at previous epochs have a greater influence in determining the current values of the state vector. 
Equation (8) is used to incorporate the measurements made at the current epoch into the state vector 
estimates.  Equation (9) recomputes the covariance matrix P and, hence, the uncertainty in the state vector 
estimates following the incorporation of measurements at the current epoch.  
 

4. PERFORMANCE OF THE ALGORITHM ON SIMULATED DATA 
4.1 PARAMETERS  USED  IN  THE  STUDY 
 
The results of a study of the performance of the TTKF algorithm are given here using simulated 
timetransfer and clock data.  The underlying clock noise is assumed to be WFM with variance 

2
WFMσ = 1.0. The variance of the measurement noise for three of the time transfer links R11, R22 and R33 

(here called type A links) is taken as 2.0 and that for the three remaining links R44, R55, and R66 (type B 
links) as 0.5. The bias covariance matrix elements B11, B22, and B33 are set to 0.005 and the elements B44, 
B55, and B66 to 0.02.  In this particular simulation, there is no correlation between individual time transfer 
links, although correlation effects have been examined in other simulations.  This simulation deliberately 
considers links with (a) good short-term stability (measurement noise) and poor long-term stability 
(instrumentation delay instabilities) combined with (b) links having poor short-term stability and good 
long-term stability.  The ability of an algorithm to combine links with such very different characteristics 
is a good test of its performance.  
 
4.2 EVALUATION  OF  THE  PERFORMANCE 
 
Several possible statistics are available with which to evaluate the performance of the algorithm.  Because 
this study uses simulated data, it is possible to evaluate xxe a −= 01 ˆˆ  at each epoch of the simulation 
where 0ˆax  is the estimated time-offset state vector component and x the corresponding true (simulated) 
value.  TDEV( 1ê ) was chosen as the main statistic for the following reasons: 
 

a) It is widely used in the time and frequency community for characterizing time transfer links. 
b) It is a statistic that can be used to evaluate the performance of the Kalman filter over the short and 

long term by using a variety of averaging times. 
 
Other statistics may be considered in future work and include the magnitude of the time error 1̂e . 
 
4.3 SETTING  THE  INITIAL  PARAMETERS  
 
Initial estimates )(ˆ 1tx  and P(t1) of the state vector and covariance matrix are needed to start the TTKF 
algorithm.  When the pseudo-measurements are included, it is possible to determine the initial values 
explicitly from the first few measurement epochs.  Initial values of the time-offset state vector element 
and time-transfer bias state vector elements can be obtained from the measurements at the first epoch.  
Two and three epochs of measurements, respectively, are required to determine initial values of the 
frequency-offset and linear-frequency-offset state vector elements.  The magnitudes of the elements of the 
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covariance matrix usually decrease as new measurements are included, finally reaching steady values.  It 
proves to be satisfactory to set the elements of these matrices to relatively large values. 
 
4.4 INITIAL  RESULTS 
 
Examples of the underlying clock noise and time-transfer link noise containing measurement noise and 
bias delay instabilities are shown in Figures 3 and 4 for a typical simulation.  Plots of Log10ΤDEV( 1ê ) 

against Log10(τ) for averaging times between 1 and 2,000 time units are shown in Figure 5 according to 
the data summarized in Table 1. 
 
 

 
 
Figure 3.  Example of simulated clock noise.  

 
 
Figure 4.  Example of simulated noise and 
instabilities originating from the time transfer 
instrumentation of six time transfer links.

 
The key results are summarized as follows: 
 

1) Applying the Kalman filter to a single time transfer link with no pseudo-measurements does not 
always result in a smaller TDEV compared with that obtained by working directly with the raw 
time series.  This suggests that the Kalman filter is not optimally configured. 

2) Applying the filter to a group of three time transfer links with no pseudo-measurements results in 
smaller TDEV values at all averaging times compared with the value obtained by applying the 
filter to a single link.  

3) Using the filter on a group of six time transfer links with no pseudo-measurements and where the 
links have very different characteristics results in a TDEV that at almost all averaging times is 
smaller than the best value obtained from applying the filter to three links.  

4) Using a filter that includes pseudo-measurements improves the results further, particularly at 
intermediate averaging times. 
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Table 1.  Nature of the data shown in Figure 5. 
 

Data set No. of time-transfer links Filter 
applied? 

Type of link Pseudo-measurements? 

A 1 No A — 
B 1 No B — 
C 1 Yes A No 
D 1 Yes B No 
E 3 Yes A No 
F 3 Yes B No 
G 6 Yes A and B No 
H 6 Yes A and B Yes 

 

Plots of Log10(TDEV(e1)) against Log10(τ)
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Figure 5. Log10TDEV( 1ê ) plotted against Log10(τ). 

 
 
The key conclusions drawn are: 
 

1) With no pseudo-measurements the TTKF algorithm may perform sub-optimally. 
2) With pseudo-measurements the TTKF algorithm produces a composite time transfer that is more 

stable at almost all averaging times than would be obtained by applying it to any subset of the 
component time-transfer links.  

 
4.5 LIMITATIONS  OF  THE  ABOVE  RESULTS 
 
Care must be exercised when interpreting the application of the above analysis to real time-transfer data 
for the following reasons: 
 

1) In the study, the simulated clock and time transfer measurements contained noise that was either a 
pure integer noise type or a linear combination of such types.  In practice, fractional noise types 
[8] and completely different noise structures, e.g., temperature-dependent effects, may occur. 
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2) The analysis assumes an exact knowledge of the noise parameters used in the process covariance 

matrix Q and the measurement covariance matrix R.  In practice, these parameters must be 
estimated from the available measurements.  Their estimation is discussed in Section 7 and has 
been studied previously [9]. 

 
 
5. ADDITION  AND  REMOVAL  OF  TIME  TRANSFER  LINKS 
 
For effective operation of the TTKF algorithm, it is required to add and remove time transfer links 
without introducing unnecessary steps in the output of the filter.  The removal of a time transfer link is the 
simpler of the two processes. 
 
5.1 LINK  REMOVAL 
 
To remove the kth time-transfer link adjustments are made to the measurement vector y and the design 
matrix H.  All the elements in the kth row of H are set to zero as is the kth element of y.  An immediate 
consequence is that the bias state vector element bkx̂  will not be updated further.  To preserve the 

performance of the filter over longer averaging times, the pseudo-measurement ym+1 and the associated 
(m + 1)st row of the design matrix are modified.  A new set of bias weights Rw  is determined from  
 

11
1w 1

1

−

−

=
R

T
R

R B
B

,                                                                        (16) 

 
where BR is a covariance matrix of order m – 1 formed by removing the thk  row and column from the 
covariance matrix B.  The weights T

)1()1(1
T ),..,,0,,..,( −−= mRRkkRR wwwww are then entered into the last 

row of the design matrix H.  The pseudo-measurement is recalculated as  
 

Bi

m

i
im xwy ˆ

1
1 ∑

=
+ =                                                                     (17) 

5.2 LINK  ADDITION 
 
To add a link, an initial estimate of the state vector element B(m+1) and the elements PB(m+1) of the 
covariance matrix P is made.   The bias weights and pseudo-measurement are updated in a similar way as 
when removing a link.  
 
Examples of the addition and removal of time transfer links using simulated data are shown in Figures 6, 
7, and 8.  Figures 6 and 7 show the complete measurements and time transfer noise (both measurements 
and link instabilities), respectively.  Figure 8 shows the time-offset error.  The plots demonstrate that 
time-transfer links may be added and removed without introducing spurious steps to the value of the time-
offset state vector element 0ˆax .  
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Figure 6.  The simulated measurements.  A time transfer link was removed at t = 5000 and added at 
t = 6500. 
 

 
 
Figure 7.  The simulated time transfer noise and 
link instabilities. 

 
 
Figure 8.  The error ea0 in the time-offset 
element of the state vector. 
 

 
 
6. TIME  TRANSFER  LINKS  WITH  DIFFERENT  MINIMUM  

SPACING 
 
6.1 INTRODUCTION 
 
Time-transfer links have a wide variety of minimum measurement interval.  Geodetic GPS, common-view 
GPS, Ku-band TWSTFT, and X-band TWSTFT have minimum interval of 10 minutes, 16 minutes, 2–3 
days (to be changed to 1 day), and 1 hour, respectively.  Many links will also provide incomplete 
measurement time series.  A TTKF algorithm must be able to combine such links. 
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6.2 EPOCHS  WITH  NO  AVAILABLE  MEASUREMENTS  
 
The presence of j successive epochs (j arbitrary) with no available measurements can be handled by 
the TTKF algorithm.  The state propagation matrix Φ and the process covariance matrix Q may be 
modified by replacing 0τ  by 0)1( τ+j .  Doing so effectively extrapolates the previous state vector over 
j + 1 epochs and updates the covariance matrix P accordingly. 
 
6.3 PROCESSING  DATA  FROM  EPOCHS  WHERE  THE  MEASUREMENTS  ARE 

INCOMPLETE  
 
Adapting the TTKF algorithm to cope with incomplete measurements at any epoch is relatively 
straightforward.  The measurement vector y and design matrix H are adjusted as follows:  For each 
missing measurement yi the value of yi is set to zero, as are all elements in the ith row of H.  The pseudo-
measurements and the corresponding row in H are left unaltered. 
 
6.4 STUDIES  USING  SIMULATED  DATA 
 
A study of combining six time transfer links using simulated measurements was undertaken.  The clock 
noise used was WFM with variance 2

WFMσ  = 1.0.  Time transfer links 1, 2, and 3 have spacing τ0 (here 

called type C) and links 4, 5, and 6 have spacing 10τ0 (type D).  Measurements 4, 5, and 6 are assumed to 
be made simultaneously.  The time transfer link noise and instabilities are not correlated.  The 
measurement covariance matrix elements R11, R22, and R33 have the value 2.0 and elements R44, R55, and 
R66 the value 0.5.  The link bias covariance matrix elements B11, B22, and B33 have the value 0.02 and 
elements B44, B55, and B66 the value 0.005.  This example is deliberately constructed to have frequent, 
but noisy. measurements combined with less frequent, but much less noisy, measurements.  It mimics the 
situation that arises in practice when combining TWSTFT and GPS common-view data.  
 
Figure 9 shows Log10TDEV( 1̂e ) plotted against Log10(τ) for averaging times between 1 and 105 for the 
cases: 
a) Three time transfer links of type C 
b) Three time transfer links of type D 
c) Six time transfer links, three of type C, and three of type D. 
 
The long-term instabilities in the type D links (Figure 11) were significantly smaller than those for the 
type C links (Figure 10).  There were, however, noticeable short-term instabilities due to the presence of 
clock noise at the epochs where time transfer measurements were not present.  The use of all six links in 
the TTKF algorithm results in an appreciable improvement in both stability and error over medium and 
longer averaging times (Figure 12). 
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PLOT OF LOG10(TDEV(e1)) AGAINST LOG10 (τ)
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Figure 9.  Log10(TDEV( 1̂e )) plotted against Log10 (τ) for three time transfer links of type C and six time 
transfer links. 
 
 

 

 
 
Figure 10.  Example of the time-offset error 
when using three links of type C.  

 
 
Figure 11.  Example of the time-offset error 
when using three links of  type D. 
 
 

7. FUTURE  DEVELOPMENT  OF  THE  ALGORITHM 
 
The work on this TTKF algorithm may be continued in several directions: 
 
a) The study to date has assumed that only integer noise processes are present.  The use of fractional 

noise processes, in particular the description of clock noise as Flicker Phase Modulation and the time-
transfer link noise as Flicker Frequency Modulation, and the incorporation of these noise processes in 
the algorithm may be advantageous [8]. 
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Figure 12.  An example of the time-offset error obtained when using all six time transfer links. 
 
 
b) Many measurement time series that will be used with this algorithm contain temperature-dependent 

instabilities.  These instabilities do not correspond to a standard noise process.  Work is required to 
determine how best to incorporate these effects into the TTKF algorithm. 

 
c) The performance of a Kalman filter depends critically on the sufficiently accurate determination of 

the elements of the process covariance matrix Q and the measurement covariance matrix R.  Methods 
to resolve and determine noise coefficients have been described [9].  That work needs to be extended 
and applied to the TTKF algorithm. 

 
 
8. CONCLUSIONS 
 
This work has studied the conditions of use of a Kalman filter to combine separate time-transfer link 
measurements made between two laboratories, with the aim of producing an optimal composite 
measurement.  Time-transfer link biases are treated as additional state vector elements in this formulation. 
Using simulated data the resulting time-transfer Kalman filter algorithm has been shown to produce a 
composite time-transfer measurement that is more stable in both the short and long term than any of the 
component measurements.  The simulations do, however, assume that the measurement and associated 
clock noise contains noise of integer noise types, where the noise parameters are known.  The use of a 
pseudo-measurement is shown to improve further the stability of the algorithm.  The addition and removal 
of time transfer links is shown to be relatively straightforward, as is the use of the filter with missing data 
and the inclusion of time transfer links with widely differing measurement intervals.  Possible future 
improvements to the algorithm have been discussed.  The ultimate test of the algorithm will be its 
performance on real time-transfer data.  Such testing will be undertaken at NPL shortly. 
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DEMETRIOS MATSAKIS (U.S. Naval Observatory):  I was very curious about your constraint 
equation summing all the biases to zero.  That correlates 100% with the time scale difference.  I was 
wondering why it made a difference for that range of sampling times.  I think I know the reason.  It is 
because the data come in asynchronously, so you are not sampling all your biases at once.  Is that right? 
 
JOHN DAVIS:  When I use the biases on the runs I do without, we have got all the epochs complete, so 
each epoch has separate measurements.   What I think it actually comes from is from back here with this 
confusion.  I think it is a little bit like the situation that you have got with a clock algorithm, when we are 
no longer directly measuring what we are trying to determine.  With each measurement, we are measuring 
the time offset plus the bias of that particular link.  What I was trying to do in the constraint was actually 
fill the filter, so in the long term the sum of the biases stay at a minimum.   
 
YURIY SHMALLY (Guanajuato University):  Could you please say what is actually a time-error 
model in your filter?   And how many states do you filter? 
 
DAVIS:  In the states, I have three that represent the clock.  And we have one for each time transfer link 
because of these biases that occur on them. 
 
 


